Optical/IR Stellar Interferometry

H.A. McAlister CHARA, Georgia State University

Basic Long-Baseline Interferometer

Michelson's Stellar Interferometer

Young's Double Slit Fringes

"Visibility" - The Basic Observable

$$V(B) = \frac{\{I_{max} - I_{min}\}}{\{I_{max} + I_{min}\}}$$

For excellent background development, see the tutorial articles by A.F. Boden, W.A. Traub and others in <u>Principles of Long Baseline Stellar Interferometry</u>, Course notes from the 1999 Michelson Summer School ed. by P.R. Lawson.

Visibility Relation for Single Stars

 $V^2 = \{2[J1(\pi\Theta B/\lambda)]/[\pi\Theta B/\lambda]\}^2$

 Θ = Angular Diameter

B = *Baseline*

 λ = Wavelength

Visibility Relation for Double Stars

$$V^{2} = [1+\beta]^{-2} [\beta^{2}V_{1}(B)^{2} + V_{2}(B)^{2} + 2\beta V_{1}(B)V_{2}(B) Cos(2\pi B\rho Cos\theta_{p}/\lambda)]$$

 β = Brightness ratio (primary/secondary)

ρ = Angular separation

 θ_{p} = *Projection angle onto baseline* B

Effect of Increasing Δm

$$\alpha_1 = \alpha_2 = 1.0 \text{ mas}; \rho = 2.5 \text{ mas}$$

Visibility ²

Baseline (meters)

Effect of Increasing Δm

Effect of Increasing Δm

$$\alpha_1 = \alpha_2 = 1.0 \text{ mas}; \Delta m = 0$$

Visibility ²

Baseline (meters)

Challenges

• Interferometers are Complex & Hierarchical Systems

Numerous sophisticated subsystems

Siderostats/Telescopes

Delay Lines

Beam Combiners

Alignment

Metrology (Astrometry requires exceptional performance)

Attention to calibration is crucial

All working together!

Interferometry is Tough Business

Pease's 50-ft Interferometer on Mt. Wilson, c. 1935

50-ft Interferometer site in early 1980's

Challenges (Cont.)

Require New Tools & Algorithms

Scheduling & Archiving Imaging Learn from the radio experience

Science

What is optimal?
What is realistic?
Over heightened expectations?
Get theorists involved
Develop collaborations

Funding

Still regarded as a developmental area Specialized near-term science (no galaxy stuff!) Patience & perseverance Develop Partnerships

Opportunities

Wonderful Resolution

1,000 mas - classical imaging

50 mas - adaptive optics

10 mas - HST

0.1 mas - SUSI

2 orders gain over HST (but very narrow FOV!)

• Access to New Science
Resolution and Accuracy

Opportunities (Cont.)

Current Projects are Stepping Stones to an OVLA

- Prerequisites

 Significant science must be forthcoming Imaging must be demonstrated

 Partnerships must be established

 More black-belt interferometrists needed
- May be built in the 2010 decade??
- Learn from the radio experience $T_{VLA} T_{GBI} = Only \sim 20 \ years!$

Interferometry Science Most Favorable Areas

Single Stars

Effective Temperatures & Fluxes Young Stars' Structure & Morphology Stellar Surface Features Novae/Supernovae

Binary & Multiple Stars

Resolved Spectroscopic Binaries

Stellar Masses and Luminosities

Distance Calibrations

Radii of Components

Detection of Low-Mass Companions

Astrometry Ground (NPOI) & Space (SIM)

Nice Example of a Revolution Resolved Spectroscopic Binaries

Double-Lined Binaries

Spectroscopy gives mass ratio & asini
Interferometry gives a and i
Together yield masses & distances
 ("orbital parallax")
~200 DSB's have a" > 1 mas

Single-Lined Binaries

Accurate parallaxes give individual masses Hipparcos, FAME, SIM, etc.

70% of SB's are Resolvable

An Interferometric "Zooming-in" on Binary Stars

Long-Baseline Binaries

 δ (arcsec)

An Interferometric "Zooming-in" on Binary Stars

Long-Baseline Binaries

 δ (arcsec)

An Interferometric "Zooming-in" on Binary Stars

Long-Baseline Binaries

 δ (arcsec) $_{-0.02}$

Long-Baseline Binaries

Interferometry Science Other Areas

Single Stars

Limb Darkening
Linear Diameters
Star Formation Phenomena & Dynamics
Pre-Main Sequence Objects
Absolute Rotation
Flare Star Phenomena
Cepheid P-L Calibration
Mira Pulsations
P-Mode Oscillations
Hot Star Phenomena (shells, winds, etc.)
Cool Star Shells

Binary & Multiple Stars

Duplicity Surveys Close Binary Phenomena

Star Clusters

Proper Motions Duplicity Surveys

Extragalactic

Binaries in Magellanic Clouds AGN Structure

• Solar System

Planetary Satellites
Minor Planets & Comets
Solar Surface

Extrasolar Planets

Imaging exo-zodiacal dust Astrometric Detection Inspection/Verification

Interferometry Science Other Areas (Cont.)

You'll Think of Something

(Get the theorists involved!)

"History has taught us that whenever a new technique enters a new realm of observational phase space, the most striking and productive results tend to those not anticipated by even the most prescient thinkers" - Daniel Popper, 1990

Interferometry Science In Perspective

- Presently Sensitivity & (U,V) Limited
 Low Throughput is Inevitable
 Adaptive Optics May Help
 Limited Imaging Capability
- Stellar Stellar Science
- <u>Little or No Extragalactic Science</u> Limited by Sensitivity & Resolution

Currently Operating Instruments

Name	Institution	Site		Element Aperture (cm)	Max. Baseline (m)	Operating Wavelength (microns)	Operating Status
GI2T	CERGA	Calern	2	150	35	0.4 - 0.8 &>1.2	since 1985
COAST	Cambridge U	Cambridge	4	40	100	0.4 - 0.95 & 2.2	since 1991
SUSI	Sydney U	Narrabri	13	14	640	0.4 - 0.66	since 1991
ІОТА	CfA	Mt. Hopkins	3	45	38	0.5 - 2.2	since 1993
ISI	Berkeley U	Mt. Wilson	3	165	30(+)	10	since 1990
NPOI	USNO/NRL	Anderson Mesa	6	60	435	0.45 - 0.85	since 1995
PII	JPL/Caltech	Mt. Palomar	2	40	110	1.5 - 2.4	since 1995
CHARA	Georgia St. U	Mt. Wilson	6	100	350	0.45 - 2.4	since 1999
Keck	CARA	Mauna Kea	2(4)	1,000(150)	165	2.2 - 10	fringes 03/01
VLTI	ESO	Cerro Paranal	4(3)	840(250)	200	0.45-12	fringes 03/01

Example Walkthrough: The CHARA Array

- Located on Mt. Wilson, California
- Y-shaped Array Configuration
 - 350-meter maximum baseline
 - 2-dimensional (U,V) coverage
 - Baselines extendable to >500 meters
- Six Collecting Telescopes
 - 1-meter apertures
 - Alt/Az mounts
 - Active tip/tilt at secondaries
 - Facility can accommodate 2 more telescopes
- Evacuated Light Pipes
- Active Path Length Equalization & Fringe Tracking
- Dual Wavelength Regimes
 - 500 800 nm (200 μas limiting resolution)
 - $2.0 2.4 \mu m$ (1 mas limiting resolution)

Mt. Wilson – October 2000

Overall Optical Layout

Telescope Mounts

Alt-Az with Tip/Tilt Secondaries

- 7-Reflection Design by Larry Barr
- Fabrication by M3 Engineering
- All six installed by January 2000

Vacuum Light Tubes

Vacuum Turning Boxes

From East and West Arms

From South Arm

DC Components of Delay

The "Pipes of Pan"

Inside OPLE Area

Extension beyond OPLE Area

Exiting the PoP & Vacuum Systems

Upper periscope mirror for injection into OPLE

PoP End Boxes anchored to floor

Optical Path Length Equalizers (OPLE)

Beam Reducing Telescopes

- All six BRTs built and assembled.
- Internal alignment of all six complete.
- Two BRTs installed and aligned with OPLES.

Visible Beam Combiner

- Prototype two beam system complete.
- Primarily used for internal alignments.
- Internal visibility very high.
- Will have visible fringes on sky later this year.

K/H Bands Beam Combiner

- Two beam H/K system in routine operation.
- Currently detector limited new array detector this summer

K/H Band Beam Combiner Dither Mirror

Michelson's Stellar Interferometer

On Display on Mt. Wilson

